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Abstract 

While, in conventional Bragg scattering experiments, 
the Bragg angle is rarely smaller than 5 ° or greater 
than 75 ° , angles making the standard peak-width 
formula and the Lorentz factor extremely high or 
even infinite are neither impossible nor unusual in 
multiple-diffraction experiments. In the computer 
program UMWEG90, which can be used in all experi- 
mental situations, other expressions - valid for all 
possible experimental conditions - have therefore to 
be used. It is shown that the Lorentz factor for single 
diffraction can be expressed as a function of  the width 
of the intensity profiles A0h, obtained in the 8/28- 
scan mode, and of the 'effective thickness' l of the 
Ewald sphere in the direction of the reflected X-ray 
beam. New formulae for both these quantities, A0h 
and l, are derived. It is shown that the peak width of 
the intensity profiles and the 'effective thickness' of 
the Ewald sphere can be calculated in a simple man- 
ner from the divergence ~ and the wavelength spread 
AA/A of the incident beam and from the mosaic 
spread r/ and the magnitude r of the ideally perfect 
crystallites in the sample. Moreover, it is shown that 
the new Lorentz factor, L-- AOh/(IA ), is equivalent to 
the familiar one, except for Bragg angles in the vicin- 
ity of zero and 77-/2. In the next step, formulae for 
the two peak-width and Lorentz factors, A0vmweg, Lo 
for the 0 rotation and A~bvmweg, L~, for the @ rotation, 
involved in the double-diffraction process, are 
developed. Lastly, it is shown that, using the new 
formulas introduced in this paper, an excellent agree- 
ment is obtained between calculated and measured 
Umweganregung patterns of the forbidden 003 reflec- 
tion of Zn as well as the 'almost forbidden'  222 
reflection of diamond, indicating that UMWEG90 is 
an efficient tool for the characterization of the incident 
beam as well as the mosaic structure of the crystal. 

I. Introduction 

During a ~b scan (Renninger, 1937), the crystal is 
rotated about the normal to the reflecting plane whose 
Bragg intensity is measured. In the 0-20-@-scan tech- 
nique, for each step in ~b, a 8/28 scan is performed. 
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In Fig. 1 (a) the three-dimensional plot of a measured 
0-20-~b scan is given. Details about the experimental 
conditions are summarized in Rossmanith (1986). The 
intensity of the forbidden 003 reflection of Zn is 
plotted vs 0 and ~b, showing prominent peaks that are 
due to multiple diffraction. In the Renninger experi- 
ment, the entire peak intensity in 0 is not measured; 
only a relatively small 0 region in the vicinity of the 
maximum of the peak is recorded using the counter. 

Multiple diffraction occurs if at least three 
reciprocal-lattice points lie simultaneously on the 
Ewald sphere: the zero point, O, of the lattice, the 
point B belonging to the primary reflection hprim and 
the point O' belonging to the operative reflection hop. 
In Fig. 2, the experimental conditions in reciprocal 
space are shown. The intensity of the X-ray beam, 
incident parallel to So, is diffracted in the s~ as well 
as in the s2 direction. The reflected intensity in the s2 
direction behaves as incident intensity for the co- 
operative reflection hcoop, which reflects part of this 
intensity in the direction s~. This is the so-called 
Urn weganregung effect. 

It is obvious from Fig. l ( a )  that the 'integrated 
intensity' of an Umweganregung event depends on 
both the rotation about the 0 axis of the primary 
reflection hprim (see Fig. 2) and the rotation about the 

axis, which is parallel to the scattering vector hprim. 
Two Lorentz factors - Lo and L, - have therefore to 
be considered in the kinematical expression of the 
'integrated intensity' of an Umweganregung event" 

2 2 Iumw~g = scal X P12 LoL~FopFcoop, (1 a) 

where scal is a scale factor and P~2 is the polarization 
factor for the Umweganregung event given by 
Zachariasen (1965) and Fop, Fcoop are the structure 
factors of the operative and cooperative reflections 
respectively. 

Integrating the measured intensity, shown in Fig. 
l (a ) ,  with respect to 0 and plotting it against ~b results 
in the so-called Umweganregung pattern, which is 
shown in Fig. l(b).  With the help of the program 
UMWEG90, the profiles of this pattern can be calcu- 
lated for each step in ~b (Fig. lc). For this purpose, 
it is assumed that the intensity profile of each 
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Fig. 1. The forbidden 003 reflection of  Zn. (a) Three-dimensional plot of  the measured 0 - 2 0 - 0  scan. Cu Ka; 0 p r i m  = 27.57 to 28.29°; 
Opnm(Kat)=27.89°; Oprim(Ka2)=27.96°; ~ b = - 3 9  to - 1 2  ° . Peaks 1 to 10 due to Cu Ka I, la to 10a due to Cu Ka 2. (b) Measured 
Umweganregung pattern. Intensities of  (a) ,  integrated over the 0 scans, vs ~. ~ = - 4 0  to - 1 3  °. Peaks 1 to 10 due to Cu Kat, la  to 
10a due to Cu Ka 2. (c) Umweganregung pattern calculated with UMWEG90. Space group: P63/mrnc; atomic positions: ±(~,  2, ~); 
temperature parameters: /31t =/322 = 0.03796, / 3 3 3  = 0.020607,/312 =/311/2,/313 =/323 = 0; GL = 0.15; atomic scattering factors for Zn2+: 
Table 2.2B, International Tables for X-ray Crystallography (1974); remaining parameters used are given in the heading of  Table 1. 
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Umweganregung peak with respect to the azimuthal 
angle ~b can be approximated by the use of a normal- 
ized Gaussian distribution 

2 [(2rr)'/ZCrop] - '  jexp{-l(6-qJop)- / t rop}d@ = 1. ( lb)  

Consequently, the intensity l(qJ~)op for each step q~ 
is given by 

2 2 i / 2 0 . o p  ] - ! l(~/,~)op = scal x p~2LoL, FopF~oop[(27r) 

x exp {-½(q~,- qJop)2/tr2op}. (1 c) 

Because of possible overlapping of different 
Umweganregung peaks at a particular azimuthal 
angle 6~ of the ~ scan, the total intensity at that 
particular tO~ is given by 

I(@,) = Z f(a,.2)l(~b,)op, ( ld)  
op 

where f(a~.2) depends on the intensity ratio of the 
Kat and Ka2 radiation. 

In the classical Renninger experiment, the intensity 
of the multiple-scattering events as a function of the 
azimuthal angle @ for constant 0 = 0 p r i m  is measured. 
In analogy to (lc),  the intensity in this case is given 
by 

2 2 2) , /2  l ( ~ i ) o p  = s c a l  X pl2LoL+FopFcoop(8 in  

X [ (2  7 r ) ' / 2Aeumweg] -  l [ (2  ~) ' /2O'op]  - '  

xexp {-½(qJi Oop)2/ 2 - Crop}, ( le)  

where AOumw~g is the full width at half-maximum 
(FWHM) of the intensity profiles of the 0/20 scan. 

It is straightforward to calculate the angles in the 
peak maxima, the structure factors and the polariza- 
tion factor. The problem is to find expressions for the 
peak widths and Lorentz factors, applicable to all 
possible experimental conditions in multiple-scat- 
tering experiments. 

a x i s  

N~\\ 

a x i s  

Prim t~ t ~ r • -  : X  ' ~c~v r ".'n 

Fig. 2. The geometry of multiple diffraction in reciprocal space• 

In § II it will be shown that both the peak widths 
and the Lorentz factors can be expressed as functions 
of the wavelength spread and divergence of the 
incident beam and the mosaic structure of the crystal. 
The fundamentals of the derivation for single and 
multiple diffraction in the framework of the kinemati- 
cal theory will be given in §§ II.A and II.B respec- 
tively. Following the recommendation of one of the 
referees, the detailed formulae will not be given here. 

II. Theory: relationship between the peak width and 
the Lorentz factor 

A. The 'integrated intensity' obtained during a 
0/20 scan 

In § IIA the considerations will, for simplicity, be 
confined to the 'integrated intensity' of a Bragg reflec- 
tion measured in the 0/20-scan technique. In this 
technique, the crystal and the receiver are rotated 
about an axis perpendicular to the incident and 
reflected beams. The motion of the crystal and 
receiver are coordinated with respective velocities 
and 20. The geometrical conditions of the measure- 
ment in reciprocal space are given in Figs. 3(a)- (d) .  

1. Proposal for a new peak-width formula 

Dependence of the peak width on the radius of the 
ideally perfect crystallites. It will be assumed at first 
that the incident beam is exactly parallel and 
monochromatic and that the crystal is ideally perfect. 

The ideally perfect crystal is assumed, for sim- 
plicitly, to be spherical with radius r. For an arbitrary 
reflection h, the radius r can be expressed as dhNh, 
where dh is the interplanar spacing of the reflecting 
planes and 2 Nh is the number of planes in the sphere. 
From the construction of the reciprocal space it fol- 
lows that dh is represented in reciprocal space by a 
vector h normal to the reflecting planes, with length 
1/dh = d*h and consequently any ray from the origin 
with length r in direct space is represented by a vector 
parallel to this ray with length 1/r= e in reciprocal 
space. In the direction h, the value of e is given by 
e = 1/(Nhdh)= d*/Nh. Because of the finite number 
Nh of planes in the sample, the zero point O of the 
reciprocal lattice is enlarged to a sphere with radius 
e and becasue of the constant distance dh* between 
the 'origin' and the "point' h in the reciprocal lattice, 
enlargement of the 'zero point' results in the 
equivalent enlargement of the 'point' h in the 
reciprocal lattice. The lattice 'points' are dimension- 
less mathematical points only in the case Nh = oo. An 
ideally perfect crystal sphere with radius r is therefore 
represented in reciprocal space by the replacement 
of the lattice 'points' by lattice spheres with radius 
e = l / r .  

In the reciprocal space, the rotation of the crystal 
about the 0 axis is represented as a rotation of all 
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'lattice spheres' about the origin of the lattice. 
Significant intensity of the Bragg reflection will be 
observed in the counter (Fig. 3a) as long as the 'lattice 
sphere'  passes the Ewald sphere. P2-PI in Fig. 3(a)  
is the trajectory of the centre of the 'reciprocal-lattice 
sphere' P during rotation of the crystal about the 0 
axis. At P' ,  the 'lattice sphere'  first touches the Ewald 
sphere and P" is the point of last contact with the 
Ewald sphere during rotation. The peak width A0h 
of the reflection h is given by the angle P~01)2 

AOh(e)=62--6, (2a) 

with 

62, ,=cos -~ {[r*2+d*2-(r*+e)Z]/(2r*d*)} (2b) 

(consider the triangles OMP, and OMP2), where r* = 
1/h and h is the wavelength of the X-ray. The same 
peak width is obtained using an alternative picture, 
in which lattice points pass a 'thick' Ewald sphere, 
which consists of two spheres denoted S1 and $2 
with the same centre M, but with different radii r* - e 
and r* + e. 

From Fig. 3(a) it is obvious that A0h(e) can be 
calculated approximately using the relations 

b=AOh(e)d*=AOh(e)2(sin 0h)/A, (3a) 

where b is the arc P~/:'2 and (consider triangle PP'P2) 

b~ 2el(cos 0,,). (3b) 

~ ,  .co,_-- / / / / i / /  

$2 S Si  

M ~  M ,  0 

\/ "<'~ \ 

¢,,, 

i/ ~, :5 /' 
r ° I 
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Fig. 3. Dependences of the peak width: (a) on the radius r of an ideally perfect crystal sphere; (b) on the wavelength spread AA/A; 
(c) on the beam divergence 8 and the crystal mosaic spread ~#. (d) The peak width A0h in a real experiment. 
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Table 1. Peak width AOh in degrees calculated for 
Cu Kat radiation 

r =  1 / e  = 1.5 txm; AA/A = 0 . 0 0 0 3 0 6 ;  6+77 = 0 . 1 1 6  °. 

A0h(e) ,a0h(X) za0h 
O h (2a, b) (4a) (4b) (6a) (6b) 
0.2 1.686 0.000 0.000 1.802 0.128 
0.6 0.562 0.678 
1.0 0.337 0.454 
1.4 0.241 0.357 

5.0 0.068 0.002 0.002 0.185 0.130 
15.0 0.024 0.005 0.005 0.144 0.133 
25.0 0.015 0.008 0.008 0.140 0.136 
35.0 0.013 0,012 0.012 0.141 0.140 
45.0 0.012 0.018 0.018 0.145 0.146 
55.0 0.013 0.025 0.025 0.154 0.153 
65.0 0.015 0.038 0.038 0.169 0.166 
75.0 0.024 0.065 0.065 0,205 0.193 
85.0 0.068 0.200 0.200 0.384 0.328 

88.2 0.188 0.565 0.558 0.879 0.686 
88.4 0.211 0.641 0.628 0.987 0.756 
88.6 0.242 0.744 0.717 1.147 0.845 
88.8 0.283 0.903 0.837 1.470 0.965 
89.0 0.342 2.832 1.004 3.177 1.132 
89.2 0.438 2.565 1.256 2.932 1.384 
89.4 0.684 2.336 1.674 2.725 1.802 
89.6 1.410 2.158 2.511 2.567 2.639 
89.8 1.228 2.044 5.023 2.467 5.151 
90.0 I. ! 6 ! 2.005 ~ 2.433 

From triangle QQ'Q2 it is evident that (3b) is 
approximately valid only for intermediate angles 0. 
Combination of (3a) and (3b) results in 

Za0h(e)-- 2eA/[2(sin 0)(cos 0)] 

= (2 / r )h  / (sin 20), (3c) 

which bears some similarity to the peak width 
deduced in the framework of the dynamical theory 
for a thin plane parallel crystal plate (Zachariasen, 
1945, formula 3.159). 

In the second column of Table 1, the peak width 
(2a) calculated for a perfect-crystal sphere with 
radius r =  1/e = 1.5 la, m and Cu Ka~ radiation is 
given. In contrast to formula (3c), formula (2a) 
results in finite peak width over the whole range of 
0. In contrast to the Scherrer formula used in powder 
diffractometry, it predicts a broadening effect due to 
the particle-size effect not only for large but also for 
small values of 0. 

Dependence of the peak width on the wavelength 
spread of the incident beam. The influence of the 
wavelength spread AA = A , - h 2  on A0h, for the case 
of an infinite ideally perfect crystal ( e - 0 )  and an 
exactly parallel incident beam, is depicted in Fig. 
3(b). Two limiting Ewald spheres with r* = l/A1 = 
1/(h + AA/2) and r* - - - -  1/A 2 = 1/(h - A A / 2 )  pass 
through the origin of the reciprocal lattice. Significant 
intensity of the Bragg reflection will be recorded on 
the counter as long as the lattice point passes the 
region between the two limiting Ewald spheres during 
rotation about the origin of the lattice. It can be easily 

deduced from Fig. 3(b) that A0h(h) is given by 

A0h( A ) = 0, - 02, (4a) 

where 01 and 02 are the Bragg angles for A1 and A2 
respectively. 

In the third and fourth column of Table 1, the peak 
width defined in (4a) is compared with results for 
the commonly used formula 

A 0 h ( A  ) = ( A / I k / A )  tan O h , ( 4 b )  

For zaA the value given by Ladell, Zagofsky & 
Pearlman (1975) for Cu Ka~ was used. Apart from 
a 0 range near 0 = zr/2, both columns are identical. 
For 0 = zr/2, A0h(A) defined in (4b) becomes infinite 
and therefore cannot be used as approximation in 
the vicinity of zr/2. A0h(A) defined in (4a), on the 
other hand, is finite everywhere. The maximum at 
0 = 89.0 is easily understood from Fig. 3(b). 

Dependence of the peak width on the mosaic spread 
of the crystal and on the divergence of the incident 
beam. The factors influencing the geometrical line 
width sum up to the divergence 6 of the incident 
beam. As can be deduced from Fig. 3(c), the influence 
of the divergence 6 and mosaic spread 77 on A0h does 
not depend on 0h. In the case e -- 0, AA -- 0 and 77 ~ 0, 
Al0h(6) is given by 6 for all 0h, and in the case e -  0, 
AA--0 and 6- -0 ,  A0h(r/) is given by ,7. In the case 
where both 6 and r /are nonzero, the two components 
cannot be distinguished. 6 and r/ add up to a final 
peak width, constant for all 0, 

A0h(6 + n)  = 6 + n- (5) 

The peak width in a real experiment. In practice, 
A0h depends on all the quantities e, r/, AA and 6 
simultaneously, all four being zonzero. In this case, 
A0h can be determined approximately using Fig. 3(d). 
The limiting Ewald spheres, due to the divergence 6, 
are broadened, due to the wavelength spread AA. The 
'reciprocal-lattice sphere' PI is for the first time in a 
reflection position at P'  and the 'reciprocal-lattice 
sphere' /:'2 is for the last time in a reflection position 
at P". The peak width A0h is therefore given by the 
angle P~OP'I. It is obvious from Fig. 3(d) that 

A 0  h • 6 2 +  6 - -  61 q- 1" I. (6a) 

61 and 62 can easily be obtained from the triangles 
OMIP'2 and OM2P~ in analogy to (2b). It is therefore 
not at all difficult to calculate the peak width defined 
in (6a) with the help of a computer. In Table 1, the 
peak width (6a) is compared with the peak widths 

dOh=Constant+(dA/A) tan 0h, (6b) 

which is normally used for 0/20-scan-range calcula- 
tions in diffractometry using conventional X-ray tubes 
[see for example Furnas (1957) or the manual of the 
single-crystal diffractometer CAD-4 by Enraf-Nonius  
(1982)]. For the constant term in (6b), the value 0.128 ° 
[=--AOh(eLs+(6+rl)=O.O12+O. 116 °] was used. 
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Columns five and six of Table 1 show similar values 
only in the 0 region between 15 and 75 °, where they 
differ by less than 0.012 °. For 0 less than 15 °, the peak 
width is slowly decreasing according to (6b), whereas 
a peak broadening due to the particle-size effect is 
obtained with (6a). For 0 greater than 75 °, the two 
columns differ appreciably. The steeper increase of 
A0, due to (6a) levels off at a finite value, whereas 
(6b) becomes infinite at 0 = 90 °. In (6b), the term due 
to the wavelength spread is dominant. The peak width 
calculated with (6a), on the other hand, is finite in 
the whole range of 0. The maximum at 89.0 ° can be 
easily understood from Fig. 3(d). 

In Fig. 4, the peak width calculated with (6a) and 
(6b) respectively are compared with experimental 
values. The full width at half-maximum (FWHM) 
values for the Cu Ka~ component have been esti- 
mated from the step-scan profiles of Bragg reflections 
measured in the 0/20 mode with Cu Ka radiation 
using a Zn single-crystal sphere with diameter 100 ~m 
(Bengel, 1991). The two theoretical peak widths, 
calculated using the input parameters given in the 
heading of Table 1, deviate only slightly for the 0 
range of the measurement, the main difference being 
the minimum of the peak width calculated with (6a) 
at about 0 = 26 °. The main advantage of the new 
formula is that it is entirely calculated from physically 
meaningful parameters. The significance of the new 
peak-width formula will be discussed further in § B, 
where multiple scattering is considered. 
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Fig. 4. Comparison of measured and calculated peak width AO h 
of Zn. Symbol Q: peak width (FWHM) for Cu Ka I deduced 
from measurement with Cu Ka radiation. (a) Theoretical curve 
calculated with (6a). Input parameters for calculation as in the 
heading of Table 1. (b) Theoretical curve calculated with (6b). 
Constant term in (6b) is 0.128 °. 

2. Proposal for a generalized Lorentz factor 

The intensity of coherent scattering of an exactly 
monochromatic and parallel incident beam from an 
ideally perfect small crystal 

ideal I~[F.12G2 (7a) 
coh = 

is negligible unless Bragg's law is exactly or very 
nearly satisfied (Compton & Allison, 1935; 
Zachariasen, 1945; James, 1948; Buerger, 1960; Laue, 
1960; Azaroff, 1968; W61fel, 1975). The scattered 
intensity is proportional to the well known inter- 
ference function G 2 of the kinematical approach and 
is therefore a function of the scattering angle 0. The 
exceedingly sharp function G 2 has its maximum at 
0 = 0h, where 0, is the Bragg angle. The peak height 
is proportional to the square of the number of unit 
cells in the crystal, 

(/ideal~ 
Jcoh /max Ie Fh 2( Very / Vcell)2, ( 7 b )  

its tiny but finite half width is inversely proportional 
to the number of unit cells Nh in the direction h 
involved in the scattering process, le is the intensity 
scattered by an electron and Fh is the structure factor. 
Ie and Fh are both slowly varying functions of 0 and 
are therefore usually assumed to be constant in the 
region of 0, where G 2 is significantly greater than 
zero. Very and Vcell are the volumes of the crystal and 
the unit cell respectively. 

In practice, the crystal is not ideally perfect and 
the incident beam is neither ideally monochromatic 
nor are the rays of the beam exactly parallel. Experi- 
mentally, one cannot therefore measure the intensity 
(7b) for a sharply defined scattering direction, so an 
average intensity for scattering directions lying within 
a finite solid angle is measured. The measurement 
corresponds to an integration 

Jcoh/,ideal dx=  ZelFh[ 2 ~ G 2 d x = l .  (7c) 

and I h is therefore commonly called the 'integrated 
intensity'. The variable x depends on the experimental 
conditions. 

For the rotating-crystal method, the 'integrated 
intensity' of the single Bragg reflection I, is given by 
(Azaroff, 1968, p. 199) 

lh=(R2/to)le[Fhl2( Vcry/ Vce,,)2L(A3/ Very), (Td) 

where R is the distance between the scattering elec- 
trons and the counter and to is the uniform angular 
velocity of the crystal rotation. L is the Lorentz factor 
and A is the wavelength of the radiation used for 
diffraction. The 'integrated intensity' I, is the energy 
received by the counter during rotation of the crystal. 

For a crystal rotation about an arbitrary axis, 
Zachariasen (1945) has given for the Lorentz factor 
L the expression (his formula 3.78) 

L = 1/(sin 3' cos X cos ~). (8a) 
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The angles involved in (8a) are defined Fig. 2 with 
respect to the 0 axis. 

When the crystal is rotated about an axis normal 
to the incident and reflected beams (s c =X = 0), as in 
the usual rocking curve or 0/20-scan experiments, 
the Lorentz factor (8a) reduces to the familiar 
expression 

L = 1/sin 20.. (8b) 

A lot of approximations are necessary to yield the 
'integrated intensity' in the simple form given in for- 
mula (7d). Different approaches to achieve the 
desired result (7d) in connection with (8a) or (8b) 
can be found in the literature. Because of the approxi- 
mations used, the Lorentz factors defined in (8a) and 
(8b) are not valid for all possible experimental condi- 
tions, being infinite for special angles and resulting 
in an infinite scattered intensity for the corresponding 
reflections. These Lorentz factors cannot therefore be 
used in computer programs applied to all experi- 
mental situations. The derivation of the Lorentz factor 
given by Laue (1960) was therefore reconsidered 
using the geometrical constructions of Figs. 2 and 
3(a)- (d) .  

Dependence of the Lorentz factor on the radius of 
the ideally perfect crystallites. Again, it will first be 
assumed that the incident beam is exactly parallel 
and monochromatic and that the crystal is ideally 
perfect. 

For the rotating-crystal method, the 'integrated 
intensity' I , ,  detected by the counter, is given by 
(Laue,1960, p. 199) 

l .=(R2/o))I ,  lF.12II G2dOdg2, (9a) 

where the solid angle dO in the direction of the 

diffracted beam as well as a small element of rotation 
about the 0 axis, dO, are represented in Fig. 5(a). 
Moreover, in Fig. 5(a) the volume element in 
reciprocal space, d V*, is represented by the area 
element dS, perpendicular to the reflected beam, and 
the element dl in the direction of the reflected beam, 

d V* = dS dl. (9b) 

It is obvious from Fig. 5 that the reciprocal-lattice 
point P~ moves a distance I = P ~ M - P 2 M = 2 e  
against the direction of the reflected beam during the 
rotation A0h(e) about the 0 axis and that dl corre- 
sponds to the distance between two consecutive inter- 
secting areas S and S' of the 'lattice sphere' with the 
Ewald sphere before (S) and after (S') rotating the 
crystal dO degrees (see Fig. 5a). I is the 'effective 
thickness' of the Ewald sphere in the direction of the 
reflected beam. From Fig. 5(a), the two equations 

dl: 2e =dO: A0,(e) (9c) 

and 

dS=(1/a2)dn (9d) 
can easily be deduced. Thus the relation 

~G2dOdI2=A2[AOh(e) / (2e)]~G2dV * (9e) 

is obtained. From the relation (Laue, 1960, p. 191) 

(32 d V*= Vcry/ V~ell , (9f) 

the integration in (9a) can easily be performed. The 
'integrated intensity' can therefore be expressed as 

I .  ( R21<o)zo lF .12V.y l  ~ " = Vce,iA-AOh(e)l(28). (9g) 

A0h(e) is defined in (2a). By comparison of (7d) with 

oo+O-fl/  

/ 

'M '  ' 0 i  

(a) ¢b) 

Fig. 5. (a) Derivation of the Lorentz factor for an ideally perfect crystal sphere, b) The 'effective thickness' of the Ewald sphere in a 
real experiment. 
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Table 2. Lorentz factor L and 'effective thickness' I of 
the Ewald sphere calculated for Cu Ka~ radiation 

r =  1 / e  = 1.5 ~ m ;  ~l)t/A = 0 . 0 0 0 3 0 6 ;  6 + r / = 0 . 1 1 6  °. C o l u m n s  six 
a n d  seven  are the resul ts  o f  c a l c u l a t i o n s  u s ing  these  p a r a m e t e r s ;  
for c o m p a r i s o n ,  c o l u m n s  four  a n d  five give the a p p r o p r i a t e  va lues  

for  e = r l = 6 = 0 .  

l ( A ) X 1 0  6 ! × 1 0 6  

L L(e) ( A - ' )  L(A) ( A - ' )  L 
O. (8b)  (9h)  ( lOb)  ( lOc)  ( lOb)  ( lOc)  

l.O 28.65 28.65 < 1 28.65 179 28.65 
2.0 14.34 14.34 < l  14.34 225 14.34 
3.0 9.57 9.57 i 9.57 272 9.57 
4.0 7.19 7.19 2 7.19 318 7.19 
5.0 5.76 5.76 3 5.76 365 5.76 

15.0 2.00 2.00 27 2.00 817 2.00 
25.0 1.31 1.31 71 1.31 1211 1.31 
35.0 1.06 1.06 131 !.06 1499 1.06 
45.0 1.00 1.00 199 1.00 1646 1.00 
55.0 1.06 1.06 267 1.06 1635 1.06 
65.0 1.31 1.31 326 1.3 ! 1466 i .3 l 
75.0 2.00 2.00 371 2.00 ll61 2.00 
85.0 5.76 5.76 394 5.76 756 5.76 

88.2 15.93 15.95 397 16.13 611 16.30 
88.4 17.91 17.95 397 18.28 601 18.62 
88.6 20.47 20.55 397 21.23 590 22.02 
88.8 23.88 24.05 397 25.78 576 28.92 
89.0 28.65 29.08 793 40.48 997 36.08 
89.2 35.81 37.24 650 44.69 849 39.10 
89.4 47.75 58.11 540 49.06 734 42.06 
89.6 71.62 81.26 460 53.10 651 44.65 
89.8 143.24 93.30 413 56.07 602 46.46 
90.0 ~ 98.68 397 57.18 585 47.12 

(9g), the Lorentz factor 

L ( e ) =  A0h(e)/(2cA ) (9h) 

is obtained. Insertion of the approximation (3c) for 
A0h(e) results in 

L -  1/(sin 20), 

indicating that, for intermediate Bragg angles 0, (9h) 
corresponds to the commonly used Lorentz factor 
defined in (8b). 

If the crystal is rotated with a constant angular 
velocity to, the velocity of the reciprocal-lattice point 
(see the lower part of Fig. 3c) is v = tad*. The com- 
ponent of this velocity in the radial direction is given 
by vr* = tad* cos 0 = (to/A) sin 20. Only the similarity 
of the expression ta/Vr* with (Sb) justifies the some- 
what misleading interpretation of the reciprocal value 
of v~. as an approximate measure (Buerger, 1960; 
Nuffield, 1966), for the dimensionless purely 
geometrical Lorentz factor, which is independent of 
the velocity of rotation as well as of the time t taken 
for the reciprocal-lattice point to pass through the 
reflection condition. 

The values for the Lorentz factor (9h) of Cu Kal 
radiation calculated for r = 1.5 ~m are given in the 
third column of Table 2. They are compared with the 
familiar Lorentz factor L =  1/sin20h given in the 
second column. Both Lorentz factors result in iden- 
tical values for all Bragg angles, except for 0 in the 

vicinity of rr/2, where the commonly used Lorentz 
factor becomes infinite, whereas (9h) is finite 
everywhere. 

The Lorentz factor in a real experiment. The 
geometrical conditions in reciprocal space for an 
intensity-profile measurement in a real experiment 
are depicted in Fig. 5(b). M, M~ and M2 are the 
centres of the Ewald spheres with radii r*, r* and r* 
respectively. Sphere S~, with the radius r * - e  and 
centre M~, and sphere $2, with radius r * + e  and 
centre M2, are the limiting spheres of the region, 
where the reflection condition for an ideally perfect 
crystallite of the sample is fulfilled with respect to 
the central ray of a divergent incident beam. Because 
of the mosaicity of the sample and the divergence of 
the beam, the reciprocal-lattice point of the entire 
mosaic crystal is for the first time in a reflection 
position at point P'~ and for the last time at P~. For 
a real experiment, where zaA, e, ~ and r I are all 
nonzero, formulas (9c) must therefore be replaced by 

dl: !=  dO: A0h, (10a) 

where the 'effective thickness' of the Ewald sphere in 
the direction of the reflected beam l corresponds to 

l= P'~M- P'2M (10b) 

and A0h is defined in (6a). Following the reasoning 
of the previous subsection, the Lorentz factor for the 
real experiment can be expressed as 

L= aOhl(lA), (10C) 

relating the generalized Lorentz factor to the peak 
width and 'effective thickness' of the Ewald sphere 
in the direction of the reflected beam. It is straightfor- 
ward to calculate the 'effective thickness' of the Ewald 
sphere using the triangles P'IMO and P'2MO of Fig. 
5(b). Results for the 'effective thickness' of the Ewald 
sphere l, using the parameters given in the headings 
of Tables 1 and 2, are given in the sixth column of 
Table 2. The proper generalized Lorentz factor is 
given in the seventh column of Table 2. For com- 
parison, in columns four and five the appropriate 
values for e = r l = 6 = 0  and AA/A =0.000306 are 
given. In agreement with Figs. 3 (a ) - (d ) ,  I is constant 
(=2e)  if only the parameter e is nonzero; l increases 
with increasing 0 if only the wavelength spread is 
nonzero. In the case of a real experiment, l has a 
maximum for intermediate Bragg angles 0 and a local 
maximum in the vicinity of 0 = 7r/2. 

The generalized Lorentz factor is identical to the 
familiar one for nearly the whole region of possible 
Bragg angles, but it is finite in the vicinity of 0 - 0  
or rr/2 for all physically meaningful parameter com- 
binations and the values depend on the parameters 
used for calculation. 

It is obvious from Table 2 that, because of the 
equivalence between the familar and generalized 
Lorentz factor for most Bragg angles, the Lorentz 



604 RELATIONSHIP BETWEEN LORENTZ FACTOR AND PEAK WIDTH 

factor defined in (8b) is an excellent approximation 
for conventional Bragg scattering experiments, where 
the Bragg angle is rarely smaller than 5 ° or greater 
than 75 ° . But for the simulation of multiple-scattering 
events in 0-scan patterns, the use not only of a new 
peak-width formula, analogous to (6a), but also of 
a generalized Lorentz factor, derived on the basis of 
(10c), is necessary, because angles making (8a, b) 
infinite are neither experimentally impossible nor 
unusual. 

B. The 'integrated intensity' obtained during a 
0-2 O- O scan 

As pointed out in the Introduction, in multiple- 
scattering experiments, two rotations have to be con- 
sidered: the rotation about the 0 axis for a constant 
azimuth 0 and the rotation about the 0 axis at a 
constant angle 0. 

(a) Rotation about the 0 axis 

1. The width of  the Umweganregung peak obtained 
during 0 rotation 

Dependence of  the peak width AOumweg on the radius 
of  the ideally perfect crystallites and on the wavelength 
spread of  the incident beam. Once more, it will first 
be assumed that the incident beam is exactly parallel 
and monochromatic and that the crystal is ideally 
perfect. In Figs. 6(a) and (b), the elevation and plan 
of Fig. 2 with respect to the direction of the 0 axis 
are shown. 

The width of the intensity profile of the operative 
r e f l e c t i o n ,  A 0 o p ,  is given by the angle O~OO',. In the 
case of double diffractiion, the reflected beam s2 
(=-MO') in Fig. 6(a) acts as incident beam for the 
cooperative reflection and consequently the point O' 
acts as the new zero point of the reciprocal lattice 
with respect to the cooperative lattice point. During 
the 0 rotation about the point O, the new zero point 
O' moves along the trajectory O~O',. Simultaneously, 
the lattice point B, belonging to the cooperative reflec- 
tion, moves along the trajectory B2B~. Because the 
reciprocal lattice is rotated as a whole (O0 'B  is a 
rigid triangle), there is no independent rotation of 
the point B about the new zero point O'. The coopera- 
tive lattice point touches the 'thick' Ewald sphere for 
the first time not at B2 but at n 3 and leaves it at B 4. 

The width of the intensity profile due to the coopera- 
tive reciprocal-lattice point B, A0coop, therefore cor- 
responds to the angle B30B4, i.e. A0coop is equivalent 
to the peak width of the primary reflection, A0prim. 
It is obvious from Fig. 6(b) that, in the given example, 
not all of the intensity reflected in the MO' direction 
is reflected once more in the MB direction because, 
moving from B2 to B 3 and from B4 to BI, the coopera- 
tive lattice point B is not in reflection position. The 
opposite can also be true: if the width A0op is smaller 

than A0coop, then the cooperative reciprocal-lattice 
point is partly in a reflection position, but there is no 
incident intensity to be diffracted. 

It will be assumed in the following that the intensity 
profile of both operative and cooperative reflections 
can be closely described by a Gaussian form, with 
standard deviations ~rop and Ocoop. These standard 
deviations are proportional to A0op and A0coop respec- 
tively. Both Gaussian distributions reach their 
maxima simultaneously at the same angle of rotation 
00, at which both reciprocal-lattice points O' and B 
lie on the sphere S. The intensity profile of the double 
reflection is therefore given by 

C, exp [-½(0 Oo)21 2 - O'op]C2 exp [-½(0 - 00)2 /  2 O ' c o o p ]  

-Cexp[-½(O-O0)2(O-2op+ 2 2 2 - Ocoop) / (O'o , ,O 'coop)] ,  

( l la) 

where C,,  C2 and C are constants. The peak width 
of the double reflection A0u . . . .  g will therefore be 
proportional to the standard deviation O'Umweg, given 
by 

2 _ 2  x l / 2  13rUmweg = OropGrcoop/ ( Grop-l- Ocoopl . (llb) 

~ i ~  ~-~×i~ 
2 

1 o9 

~ c  o "  

/ "I I~'3 B 

(b) ..~ .~ 

.,,9 

\ '. l ~ . .  

~" / . ~  
; - .  

(c)  ...... , 
" --~ (7)" ' / / ......... , 

Fig. 6. Elevation and plan of  the geometry in reciprocal  space, 
given in Fig. 2, with respect to the direction of  the 0 axis. (a)  
Elevation with AA = (5 = )7 = 0, e # 0. (b) Plan with AA = 8 = ~ = 
O, e # O .  (c) Plan with e=AA =0 ,  8 # 0 ,  77=0. 
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Table 3. Comparison of measured and calculated peak widths ( FWHM) of the forbidden 003 reflection of Zn, 
calculated for Cu Ka 

A/~/,~,  (o¢1) = 0.000301,  AA/A (32) = 0.000413, 6p = 0.12 °, 6, = 0.14 °, r = 1 / e  = 5 ~m,  77 = 0.03 °, cell cons tan t s :  a = b = 2.6657, c = 4 .9403/~ ,  
Ùprim = 27.89 °. 

N o .  hop/hcoop A 0 o b  s A O u m w e g  I//( ff l / O f 2 )  A ~//ob s A I~ /¢a1¢  A~/nUmweg 

1 201/204 0.165 (5) 0.163 -37.99/-37.56 0.30 (1) 0.32 (I) 0.29 
204/20] 0.30 

2 2i3/210 0.165 (5) 0.163 -36.79/-  0.72 (2) 0.78 (2) 0.70 __ 
210/213 0.92 __ 

3 121/122 0.162 (5) 0.163 -35.27/-35.76 0.30 (1) 0.30 (1) 0.27 
i22/121 0.26 

4 023/020 0.168 (5) 0.163 -33.93/-34.14 0.35 (I) 0.36 (1) 0.24 
020/023 0.23 

5 + 5 a  l l i / l T 2  -32.62/-32.58 0.25(1) 0.23(I) 0.22 
l l 2 / l i l  0.24 __ 

6 213/210 0.165 (5) 0.163 -36.79/-  0.72 (2) 0.78 (2) 0.70 -_  
210/213 0.92 __ 

7 + 7 a  011/014 -29.91/-30.09 0.36 (l) 0.36(1) 0.25 
014/01T 0.34 

8 021/022 0.168 (5) 0.163 -27.17/-27.33 0.32 (l) 0.31 (i) 0.22 
022/021 0.22 

9+9a ] i 3 / l l O  -22.72/-22.65 0.25 ( i )  0.25 (1) 0.28 
l 1 0 / l i 3  0.21 

10 311/312 0.162(5) 0.163 -16.32/-15.83 0.27(1) 0.28(1} 0.27 
312/311 0.26 

Drawing the appropriate Ewald construction, it can 
easily be shown that the considerations of this subsec- 
tion also hold true for the dependence of the peak 
width on the wavelength spread of the incident beam. 

Dependence of the peak width AOu,,,,,.eg on the diver- 
gence of the incident beam and on the mosaic spread 
of the crystal. In this subsection an infinite ideally 
perfect crystal and a negligibly small wavelength dis- 
persion are assumed. As can be seen from Fig. 6(c), 
the peak widths of the operative and cooperative 
reflection, A0op and A0coop, due to 6p, the divergence 
of the incident beam in the scattering plane of the 
primary reflection, are equal to 6p for all rotation 
angles 0, dOcoop being equal to ~Opr~m. Furthermore, 
because the points B2 and O~ as well as the points 
B~ and O'1 simultaneously touch the Ewald sphere, 
the same is true for the double diffraction, 

A0umw~g = t~v. (12) 

In the last step, an exactly parallel and monochro- 
matic incident beam and a crystal consisting of large 
mosaic blocks ( e - 0 )  will be considered. For an 
isotropic mosaic distribution, the mean angle between 
the reciprocal-lattice vectors, which belong to one 
reciprocal-lattice point, is constant for all directions 
and proportional to the mosaic spread r/. Replacing 
the symbol 6p in Fig. 6(c) by r/ . . . .  the largest angle 
between mosaic blocks, the vectors OB~ and OB2, 
for example, can be interpreted as the limiting vectors 
of possible hprim in the plane of the paper. As long 
as one of the v e c t o r s  hprim , lying between these two 
vectors, touches the Ewald sphere during rotation 
about the 0 axis, the respective reciprocal-lattice point 
is in a reflection position. Because the three vectors 
hprim , hop  and hcoop form a rigid triangle and because 
the isotropic mosaic spread r/ is equal for all 

reciprocal-lattice vectors, it follows that, for the case 
when the conditions for double reflection are fulfilled, 
there is, for every hpr~m, the corresponding vector 
triangle hpr~m, hop and hcoop. Double diffraction there- 
fore takes place as long as hprim is in a reflection 
position, i.e. 

• AOumweg = r/. (13) 

The peak width in a real experiment. In a real experi- 
ment, the broadening of the Ewald sphere due to e 
and AA has to be considered simultaneously. The 
derivation of A0op(E, AA ) and A0coop(e, Ah) is 
straightforward using a 'thick' Ewald sphere similar 
to Figs. 6(a) and (b) that in addition takes into 
account the broadening due to AA. 

Insertion of the full width at half-maximum 
(FWHM) for AA and e results in the relation 

°top . . . .  p(e, Ah)= AOop,coop(e, Ah)/(81n2) I/2 (14) 

between the peak width A0 and the appropriate stan- 
dard deviation of a Gaussian distribution. 
O'umweg(e, AA ) can therefore be calculated using 
( l l b ) .  The peak width (FWHM) of the Umwegan- 
regung intensity profiles due to the e, AA, 6 and r/ 
(using FWHM for all four) is then given by 

AOumweg=~Umweg(e, AA)(81n2)l/2+t~p+rl. (15) 

In Table 3, the calculated width A O u m w e g  of the 
Umweganregung peaks of the forbidden 003 reflection 
of Zn are compared with the measured widths. The 
numbers given in the first column of Table 3 corre- 
spond to the appropriate peaks of Fig. l (a ) ,  due to 
Cu Kal radiation; the numbers followed by the letter 
' a '  correspond to the same hop/hcoop, but are due to 
Cu Ka2 radiation. The peak width AOumwcg, given in 
the fourth column of Table 3, calculated for Cu Kat 
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radiation with parameters given in the heading of the 
table, agree very well with the observed ones, which 
are given in the third column of the table. This 
confirms the initially surprising fact, predicted in 
formula (15), that the widths A0cmw~g are nearly equal 
in magnitude for all Umweganregung peaks in the 
0-20-4'  scan of the primary reflection under con- 
sideration. In Fig. 7, the triangle O'OB, defined in 
Fig. 6(b), for the Umweganregung peak number 2 is 
given in the correct proportion. In this case, the peak 
width Za0op of the operative reflection can be calcu- 
lated to be 2.24 ° . This extremely high value is easily 
understood from Fig. 7. The peak width A0coop, on 
the other hand, can be calculated to be 0.163 ° , result- 
ing in AOumweg=0.163 °, in agreement with the 
experiment. 

2. The Lorentz factor for the 0 rotation 

The 'effective thickness' /Umweg of the Ewald sphere 
in the direction of the reflected beam can easily be 
deduced from Fig. 5(b), replacing d* by d* t5 by prim, 
8p and the lattice point P by the point B correspond- 
ing to the primary and cooperative reflection. 

The simultaneous motion of reciprocal-lattice 
points B and O' (Fig. 6) about the 0 axis results in 
the integrated intensity measured during the 0 rota- 
tion being proportional to the Lorentz factor Lo, given 
by 

t o  ~- A 0Umweg / (/Umweg/~ ). (16) 

Because of the dominant influence of the divergence 
~Sp on the peak width AOumweg, ifa conventional X-ray 
tube is used as source of the incident beam, the peak 
widths Za0Umweg are nearly equal in magnitude for all 
Urnweganregung peaks in the 0-20-4'  scan of the 
primary reflection and are almost equal to the peak 
width AOpr~m. The Lorentz factor Lo is therefore 
almost equal to Lho,~ = 1/(sin 20prim), for all 
Urnweganregung peaks of the scan, being to a very 
good approximation Lo = 1.21 for all Umweganregung 
events of the forbidden 003 reflection of Zn depicted 
in Fig. 1. But it was shown by Bengel (1991) that Lo 

Fig. 7. Projection of the triangle of scattering vectors in correct 
proportion, corresponding to peak 2 in Fig. l(a). 

given in (16) has to be taken into account in compar- 
ing Umweganregung intensities measured for 
different primary reflections. 

( b ) Rotation about the 4' axis 

1. The width of the Umweganregung peak obtained 
during 4' rotation 

The multiple-scattering event during rotation about 
the 4' axis for the constant Bragg angle 0 = 0prim is 
now considered. The peak width A4'umweg depends 
on the parameters AA and e in a manner analogous 
to the peak width Za0umweg. However, the effect of 
and 7/ on A4'umwog differs from that on AOumweg- 

In Figs. 8(a) and (b), the elevation and plan of the 
geometry in reciprocal space, with respect to the 
direction of the 4' axis for a real experiment, are 
shown. Contrary to the condition during the 0 rota- 
tion, the reciprocal-lattice point B belonging to the 
primary reflection as well as to the cooperative reflec- 
tion does not move during 4' rotation. For 0 = 0prim 
therefore, both reflections hprim and hcoop remain in 
reflection position during the 4' rotation. 

For the constant angle 0p~m, the effective diver- 
gence of the beam in the plane defined by the incident 
ray and the vector  hprim is limited by the angle C5p,¢, 
between the rays a and b (Fig. 8a). ~p.~f~ is the smaller 
of the two angles 6p and rl, where 6p is the divergence 
of the incident beam in the plane of Fig. 8(a). M in 
Fig. 8(a) is the centre of the sphere S with radius r*. 
M~a, M~b are the centres of the spheres Sla, Slb, 
both with radius r* - e, and MEa , M2b are the centres 
of the spheres S2a, S2b, both with radius r* + e. 

The peak width A4'op of the Umweganregung peak 
during 4' rotation can be deduced from Fig. 8(b) and 
is obviously given by 

A4'oo = 132-/31 + ~%.~, + r/• p, (17) 

where r/~ p (Fig. 8c) is the angle of rotation in the 
plane normal to the 4' axis corresponding to the 
mosaic spread 77. The divergence 8~.~,, which depends 
on 0pr~m, is defined in Fig. 8(d). Because hcoop is 
always in a reflection position during the rotation 
about the 4' axis, it follows from ( 1 1 a, b) that A4'vmw~g 
is determined solely by A4'op, 

A4'umwes = A0op. (18) 

The values for A4'umweg, obtained using (17) and (18), 
for Cu Kal are given in the eighth column of Table 3. 

In Fig. l(b), the measured intensity of the three- 
dimensional plot of Fig. l (a) ,  integrated over the 0 
scan, is plotted against 4'. In Table 3, the 4' values 
for the peak maxima of the Umweganregung peaks 
due to Cu Ka~ and Cu Kcr2 are given in the fifth 
column. In the sixth column, the observed full widths 
at half-maxima, A4'ob~ , of the intensity profiles 1 to 
10 pictured in Fig. l(b) are specified. Because of the 
overlapping of Umweganregung peaks due to Kal 
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and Ka2 radiation in the example given in Fig. l(b),  
it is not possible to compare the calculated peak width 
A0vmweg directly with these measured ones. The utility 
of the peak width defined in (17) and (18) and the 
significance of A0calc, which is also given in Table 3, 
will become obvious in § III.1. 

2. The Lorentz factor for the 0 rotation 

As pointed out above, the lattice point B belonging 
to the primary as well as to the cooperative reflection 
is always in reflection position during rotation about 
the 0 axis. The intensity incident on the plane hcoop 
during the ~b rotation is therefore identical to the 
integrated intensity reflected by hop. Consequently, 
the integrated intensity reflected by hcoop is propor- 
tional to L,  defined as 

Lo = AOop/ ( lop,~,A ). (19a) 

From Figs. 8(a) and (b) it can be deduced that lop,~ 
is given approximately by 

lop,~, = l M O ' 2 -  MO' l l  . (19b )  

In Table 4, L,  calculated using (19a) is compared 
with L,  defined by (8a), for some of the Umwegan- 
regung events of Fig. l(b).  From Fig. 2 and Figs. 8(a) 
and (b), it can easily be deduced that L,  defined by 
(8a) can be expressed as 

L o = 1/[Ah,,,~,(cos 0prim)(Sin fl)]. (19c) 

Apart from the factor I/A, (19c) corresponds to the 
Lorentz factor L,  given by Post (1975). The results 
obtained for (8a), i.e. (19c), are given in the fifth 
column of Table 4. The appropriate values for h,.~, 
and/3 are also given in Table 4. In the sixth column, 
the peak width A~bop is specified in degrees; in (19a) 
it has to be specified in radians. In the seventh and 
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Fig. 8. The geometry in reciprocal space, given in Fig. 2, with respect to the direction of the ~ axis. Real experiment. (a) Elevation. 
(b) Plan. Trajectory of the operative reciprocal-lattice point. (c) Definition of r/~, p. (d) Definition of 6,.~. 



608 RELATIONSHIP BETWEEN LORENTZ FACTOR AND PEAK WIDTH 

Table 4. The Lorentz factors Lq, and Lo for the 
Umweganregung events of Fig. l (b)  of the forbidden 
003 reflection of Zn, calculated for Cu Ka, with the 

parameters given in Table 1 

lop 
h.. 

No. hop/h~oop (,&,-~) fl (°) (19c) (°) ( A - ' )  (19a)  
_ - 

1 201/204 0.866 23.09 2.16 0.2870 1504 2.16 
_ _  

2 210/213 1.1461 2.78 13.20 0.9230 785 13.32 
_ _  

3 121/122 1.1461 20.53 !.83 0.2733 1694 1.83 
4 023/020 0.866 40.97 1.29 0.2430 2129 1.29 
5 111/1i2 0.433 77.72 1.74 0.2166 1415 1.74 

_ _  

7 011/014 0.433 44.99 2.40 0.2469 1166 2.40 
8 021/022 0.866 47.73 1.15 0.2168 2144 1.15 
9 /13/1/0 0.433 67.82 1.83 0.2763 1710 1.83 

10 311/3i2 1.146 20.53 1.83 0.2733 1694 1.83 

eighth columns lop and L~,, defined in (19b) and (19a), 
are given. The generalized Lorentz factor introduced 
in this paper is identical to that given by Post (1975) 
for Umweganregung peaks except for peak 2, for 
which the angle/3 is near zero. 

The advantage of the generalized Lorentz factor is 
that it is - in contrast to Post's - finite for/3 = 0 or 
rr, and that it is very sensitive to the parameters AA, 
6, e and r /used for calculation in the vicinity of these 
angles. 

III. Experimental check of the proposed peak widths 
and Lorentz factors: comparison between measured and 

calculated Umweganregung patterns 

In the program UMWEG90, the new peak widths 
and Lorentz factors introduced in this paper are used 
for the calculation of the intensities defined in (1 a-e). 
The advantages of the new expressions for A0, za4,, l, 
Lo and L~, are that they are finite everywhere, that 
they depend on the parameters AA, c5, e and 71 in a 
distinct manner and that they are very sensitive to 
parameter changes in the vicinity of angles for which 
the formulae usually used become infinite. Two 
examples of the successful application of the concepts 
introduced in this paper will be given below. 

1. The Umweganregung pattern of the forbidden 
003 reflection of Zn 

In Fig. l(c),  the simulation of the measured 
Umweganregung pattern of Fig. 1 (b), calculated with 
UMWEG90 is given. The parameters used-for the 
calculation are given in the legend of the figure. The 
full widths at half-maxima AqJob~ and /tqJ~l~ of the 
intensity profiles 1 to 10 pictured in Figs. l (b)  and 
(c) are specified in Table 3. For each wavelength, 
Cu Ka,  as well as Cu Ka2, the profiles of all these 
peaks are due to the overlapping of two Umwegan- 
regung events. The agreement between the two pat- 
terns is excellent, bearing in mind the possible errors 
due to the measurement (see Fig. 1 of Rossmanith, 
1986) and the simplicity of the isotropic mosaic struc- 

ture model used. The greatest deviation between 
measurement and calculation is found for peak 5, 
which is due to two strong reflections. The deviation 
may therefore, in addition, be due to extinction as 
well as absorption effects, which have been neglected 
in UMWEG90 until now. 

Peaks 2 and 6 in particular in Fig. l(b) are not 
symmetrical. This is readily understood from Fig. 
8(b). The angle 13 for these peaks is small (see Table 
4). The angle O~O,O' is smaller than the angle 
O'O,O'~. In O' the maximum of the peak is reached. 
To take this fact into account, the peak profile is 
simulated in the program UMWEG90 by combining 
two Gaussian distributions with two different stan- 
dard deviations oh and 0"2 for the two halves of the 
distribution 

0",=(/32-fl+~s.~+n°~,P)/(81n2) '/2, (20a) 

cr2=(/3-/3,+6~.~,+rl°~o)/(81n2) '/2. (20b) 

For joining the two halves at the same maximum 
value, the normalization factor in (1 b, c) is replaced 
by 

( 8 7 r )  - , / 2 (  1 / 0 . ,  + 1 / o ' 2 ) .  ( 2 0 c )  

The asymmetry of peaks 2 and 6 of Fig. l(c) is 
satisfactorily predicted by the program UMWEG90. 
Future implementation of alternative theoretical 
distributions will probably result in even better 
agreement. 

2. The Umweganregung pattern of the forbidden 
222 reflection of diamond 

The first Umweganregung pattern was given by 
Renninger (1937). In Fig. 9(a) a copy of his famous 
'Azimutregistrierung der Reflexionsintensitiit yon 
Diamant (222)' is given. The figure shows the pattern 
for a 360 ° rotation about the scattering vector of the 
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Fig. 9. Umweganregung pat tern of  the 222 reflection of  d iamond.  
(a) 'Azimutregistrierung der Reflexionsintensitiit yon Diamant 
(222)' - copy of  Fig. 2 given by Renninger  (1937). Cu Ka. 
(b) Calculat ion by UMWEG90. CuKa. Cell constants:  
a = 3.5667/~; t empera ture  parameters:  13, = 0.0016, /3 o = 0 ;  
atomic scattering factors for  C: Table 2.2B, International Tables 
for X-ray Crystallography (1974); AA/A as before;  ~5.~ = 8p = 1°; 
77 = 0.18°; r = 5 ~m; G L  = 0.1. 
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'almost forbidden' 222 reflection, obtained with 
Cu Kot radiation. The divergence 6 of the incident 
beam in Renninger's experiment was between 0.5 and 
1 ° and the mosaic spread (Reflexionswinkelbereich) 
of different samples varied between a few angular 
seconds and 1 °. 

The extraordinary width of peak 1 in Fig. 9 is due 
to the relatively small angle /3. The corresponding 
reciprocal-lattice point enters and leaves the Kal 
Ewald sphere within 9.56 ° and does not touch the 
Ka2 sphere at all. The Lorentz factor for the qJ rota- 
tion, defined in (19c) and given in Table 5 together 
with h,.~, and the angle/3, is therefore large. 

The absence of peak 3 (see Table 5) in his pattern 
was explained by Renninger to be due to the very 
small value of the polarization factor P,2. 

If one bears in mind that AOumweg is almost 
equivalent for all the peaks in one q, scan and equal 
to A0prim, the additional factor in ( le)  can be incor- 
porated in the scale factor. The additional factor has 

i 
, ! 
I , I 

(b) 

1 

[311} 

i o  

~13 )  

i o  

{115) 

D IAMOND 
(222 )  

¢uKa  t 

4 .  

.~(_. :Y7:7.-~2::, 
I 
O* 

(a)  

(1~31 

v,  
( 3 i - )  

3)  "0 

i I  

t~rT) 
1 2 2 0 1  
(ooz) 
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Fig. 10. U m weg anregung  pattern of  the 222 reflection of  d iamond.  
(a)  Measurement  by Post (1976). Cu K a  I. (b)  Calculat ion by 
U M W E G 9 0 .  Cu  K a  I . 6.~ = ~Sp = 0.01°; 77 = 0.001°; r = 100 ~m; 
G L =  0.2; remaining parameters as in Fig. 9(b). 

to be taken into consideration if synchrotron radiation 
with its characteristic small divergence is used. In this 
case, the widths AOumweg may differ appreciably for 
different peaks. 

In Fig. 9(b) the simulation calculated with 
U M W E G 9 0  using 6, = 6p = 1 ° and r /=  0.18 ° is given. 
The divergence and the mosaic spread were fitted, 
within the limits stated by Renninger, to give the best 
agreement between measurement and calculation. 
The parameters used for calculation are given in the 
legend of the figure. The calculation with U M W E G 9 0  
predicts the Renninger pattern surprisingly well. 

A 30 ° portion of the diamond 222 pattern was 
recorded once more with improved resolution by Post 
(1976). The divergence of the incident beam was 
limited to 6 <-0.033 °. Post reports in his paper that 
the divergence exceeded the acceptance angles of the 
interactions and that therefore integrated intensities 
were measured in the scanning process with standard 
errors of 40%. The copy of Post's pattern, given in 
Fig. 10(a), is compared with the simulation in Fig. 
10(b), calculated with parameters fitted within the 
limits given by Post to give the best agreement 
between the measured and calculated patterns. The 
value obtained for the FWHM of 6 , = 6 r = 0 . 0 1  ° 
agrees well with the divergence in the experiment, 
whose maximum was limited to 0.03 ° . The very small 
peak 3 can be observed in the measured as well as 
in the calculated drawings. 

To get better agreement between measured and 
calculated intensity profiles, the exponential function 
in (1 c, e) is replaced by 

(1 - G L )  exp {_1 (6 , -  6op)2/Cr2op} 

+GL{1 + [2(6, - ~0op)/A6op]2} - '  (21) 

in the program UMWEG90.  GL is a measure for the 
Lorentzian contribution to the theoretical distri- 
bution. 

A very good fit of the intensity profile of peak 1 
was obtained using 20% Lorentzian contribution to 
the theoretical distribution instead of the 10% used 
in Fig. 9(b). This can be readily explained: the width 
of this peak is mainly due to wavelength dispersion, 
e = 1 / r =  1/100 p~m and ~ =0.001 ° are very small in 
this fit. 

In Table 5, the Lorentz factors L~,, calculated with 
the different parameter sets, used for calculation of 
the patterns of Figs. 9(b) and 10(b), are also given. 
Apart from peak 1, these factors are identical to the 
familiar one. However, for/3 in the vicinity of zero, 
the new Lorentz factor deviates from that given by 
Zachariasen (1945), the deviation being dependent 
on the parameter set used. 

The intensity of the peak 1 calculated with (lc, e) 
is very sensitive to the values obtained for L~, as well 
as for the peak width trop. Because both quantities 
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Table 5. Comparison of the Lorentz factors L, defined 
in (23a) and (23b)for  the Umweganregung events of 
the 'almost forbidden' 222 reflection of diamond, 
marked in Figs. 9 and 10, calculated for Cu Kot~ with 

A,~/,~ (~,) =0.000301 

Cell constant: a = 3.5667 A, 0prim = 48-43 °. 
L~0(P): ~p =Ss =0.01 °, r =  100 ~.m, 77=0.001 °, corresponding to 
Fig. 10(b). 
L~0(R): ~p = ~Ss = 1 °, r = 5 Izm, r /= 0.18 ° corresponding to Fig. 9(b). 

~.~ fl L~ L~ ( P ) L, ( R ) 
No. hop/hcoo p ( ) (o) (19c) (19a) 

1 313/111 0.458 4.78 25.65 25.74 28.61 
2 113/111 0.458 78.50 2.18 2.18 2.18 
3 113/13T 0.793 54.88 1.51 1.51 1.51 
4 313/131 0.916 26.25 2.42 2.42 2.42 

depend on the four parameters AA, 3, e and r/ in a 
distinct manner, UMWEG90 is an efficient tool for 
the determination of the divergence and wavelength 
spread of the incident beam as well as of the mosaic 
spread and block size in the sample. 

Furthermore, Figs. l (b) ,  (c), 9(a) ,  (b) and 10(a), 
(b) demonstrate the ability of UMWEG90 to predict 
the Umweganregung patterns for measurements 
carried out under very different experimental 
conditions. 
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Abstract 

Twinning can lead to a diffraction pattern with addi- 
tional reflections that are incommensurate with the 
reflections of a crystal with only one orientation of 
the structure. The integer indexing of such a diffrac- 
tion pattern involves more than three reciprocal-basis 
vectors. Analogously, for incommensurate crystals, 
the original number of ( 3 + d )  reciprocal vectors 
should be extended to a larger set for a twinned 
incommensurate crystal. In this paper, it is shown 

that the diffraction symmetry for a twinned crystal 
can be analyzed in a way analogous to the treatment 
of the symmetry of an incommensurate structure. The 
theory is implemented in a refinement program for 
X-ray and neutron diffraction data and allows all 
intensity data from isolated and overlapping reflec- 
tions to be taken into account. The method can also 
be applied to the refinement of ordinary crystal struc- 
tures. The program has been used to determine the 
modulated structure of the inorganic misfit layer com- 
pound (HoS)I.23NbS2. 
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